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Probabilistic Time and the Quantum Gravity 
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We analyze the perturbed minisuperspace models of quantum gravity through 
the analogy with the time-independent SchrSdinger equation. We show that a 
time variable defined in a previous work, the "probabilistic time," is the variable 
which yields the backreaction Einstein equations. 

1. I N T R O D U C T I O N  

In quantum gravity, the state of  the universe is described by a unique 
wave function ~, which satisfies the Wheeler-De Witt equation (WDWE). 
Since the proposal  of  Hartle and Hawking (1983) for giving boundary 
conditions which univocally specify the wave function, there has been 
renewed interest in this type of approach to quantize gravity, particularly 
in its application to quantum cosmology (Hartle, 1986). Nevertheless, one 
of  the fundamental  problems to clarify the meaning of ~/ has not been 
completely solved. The point of  boundary conditions is now also under 
discussion (Vilenkin, 1988); we will not address this here. We will suppose 
that some boundary  conditions are given in order to fix a particular solution 
of the WDWE. 

Recently Castagnino (1989) showed that working with a fixed topology, 
it is possible to introduce a normalization of the wave function (which 
allows a probabilistic interpretation) and a variable which plays the role 
of  time: the probabilistic t ime 0. This variable is exactly defined in terms of 
the wave function, it is not a classical or semiclassical object. Thus, we 
hope it will be relevant in the interpretation of the different cosmological 
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models, since the definition of a satisfactory time variable is important to 
analyze the beginning of  the universe. 

Castagnino (1989) showed that, to the lowest order in the Planck length 
o-, 0 becomes the classical time which enters into the Schr6dinger equation 
for the matter degrees of freedom. Here we will continue with this approach, 
showing that, to next order, the probabilistic time yields the semiclassical 
(backreaction) Einstein equations of the quantum field theory in curved 
space. Before doing this, we will state our interpretation of the wave 
function using an analogy between the WDWE and the time-independent 
Schr6dinger equation (TISE). 

2. WDWE AND ORDINARY QUANTUM MECHANICS 

To begin with, let us consider a model with a single gravitational degree 
of  freedom treated exactly and an infinite number of degrees of freedom 
representing metric and matter fluctuations which are treated perturbatively 
(Wada, 1986). The former degree of freedom is typically the scale factor 
in Robertson-Walker universes. The WDWE is, in this case, 

{-~o-2V2+o'-2U(a)+h(a, ~bn)}W(a, &n)=0 (1) 

where a is the scale factor, &n, n = 1, 2 , . . . ,  denote the fluctuations, 

V2= -1/2 d 

and Gij is the minisuperspace metric (in this particular example it has only 
one component Gaa = - G  = - a ) ;  h(a, &n) is the Hamiltonian of the fluctu- 
ations. It is important to note that 0(a, &n) does not depend on an external 
time parameter: in quantum gravity, time is an observable and the wave 
function contains all the observables of the universe, including the positions 
of the hands of  all possible clocks. 

Equation (1) (or its generalization to more than one gravitational degree 
of freedom) admits at least two different interpretations: on one hand, since 
the minisuperspace metric is hyperbolic, it can be viewed as a mass- 
dependent Klein-Gordon equation. On the other hand, since all the variables 
that appear in the wave function and in the differential operator are observ- 
ables, it looks like a TISE in ordinary quantum mechanics. We will adopt 
here the latter point of view (Kandrup, 1988). In this context, the natural 
normalization and interpretation of the wave function are 

(0, ~t)= J- 1~I2(-G) 1/2 d(a,, da (2) 

dP(a, On) = [ ~ b I 2 ( - G )  1/2 d&n da (3) 

where dP is the probability to find the universe in the volume element 
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(--G) 1/2 dch, da. Equation (3) is valid only if the wave function is normalized, 
i.e., i f (0,  ~0) = 1, otherwise both quantities are proportional. The conditional 
probability dP(05,/a) to observe the values 05, given the radius of  the 
universe is 

(4) 

The main objection to this point of view is that, since in the normaliza- 
tion (2) one is integrating over all variables (including the one which will 
play the role of " t ime") ,  it is likely that one cannot normalize the wave 
function (Vilenkin, 1988); note that in ordinary quantum mechanics 

dqdt Iq~(q, t)12=oo. In addition, it is not clear how to extract a "time 
variable" and a conserved probability for the fluctuations. We will address 
now these issues. 

From equation (3) it is easy to obtain the probability dP(O, 05,), where 
0 = O(a) is an arbitrary increasing function of a (this assumption will imply 
a "cosmological arrow of  time"). It reads 

de(O. +.) - d05o dO I4,1~(-G) ~/= da/dO (5) 

The function O(a) can be fixed by imposing that dP(O, 05,) be independent 
of  0 when the fluctuations are integrated, i.e., 

o r  

f d05,, 14~12(-G) ~/2 da/dO = (const) 

dO/da = const �9 f d05. I~Ol2(-G) ~/2 

(6a) 

E 

(6b) 

This is just the definition of "probabilistic t ime" given in Castagnino (1989) 
using a different argument. 

The function x(O, qS,), defined up to a phase through 

x( O, qS,) = (const)l/2~b(-G)a/4( da/ dO) 1/2 (7a) 

is automatically normalized (for all 0) in the following sense: 

(x, x)  = [ Ixl = d6~ -- 1 
J 

(7b) 

Note that we have two different normalizations denoted by (,) and (,) .  In 
the first one the integration is performed over all variables, while in the 
second one 0 is not integrated, giving a 0-independent normalization for X. 



1046 Castagnino and Mazzitel|i 

In terms of  the variable 0, equation (2) becomes 

(~0, ~0)--- f IX] 2 dO, dO = f dO= 0max-- 0rnin (8) 

and will be infinite or not, depending on the model considered. For example, 
if the model has a classical limit, then (~0, q~) will be infinite because 
0max ~ tma x = 00. 

Now we see what is going on. The introduction of  the variable 0 allowed 
us to extract from ~0 a probability density (IX] 2) with conserved normalization 
and also to isolate the possible source of nonnormalizability of the complete 
wave function [see equation (8)]. The analogy with the TISE is useful to 
clarify the last point. The TISE admits two types of  solutions: normalizable 
solutions with quantized values of  the energy and nonnormalizable ones 
with continuous spectrum. This situation translates mutatis mutandi to the 
WDWE. There will be normalizable solutions (with quantized cosmological) 
constant and nonnormalizable ones, depending on the model and boundary 
conditions considered. Some examples of the first type have been analyzed 
in Wudka (1987), although they may appear unphysical. The nonnormaliz- 
able solutions are more relevant, since they give the correct classical 
behavior. 

It is important to note that the nonnormalizability of ~0 is not an obstacle 
to calculating the conditional probabilities [equation (4)] and to introducing 
the probabilistic time 0 and the wave function X. Furthermore, one can 
insist (Castagnino, 1989) and normalize q, working in a finite "temporal  
box"  of size T = (0~ax- 0mio) and dividing the wave function by the factor 
T 1/2. This is analogous to what is done, for instance, for free particles in 
ordinary quantum mechanics, where one divides ~ ( x ) = e x p ( i p  .x)  by 
the square root of the total volume in order to normalize the wave 
function. 

The following point is also worth noting. Our procedure depends on 
the choice of the variable in terms of which the probabilistic time is defined. 
In the example we studied above, the natural candidate was the radius of 
the universe and, in fact, we defined 0 in terms of a. This is justified because 
one expects a to be the first variable which becomes semiclassical. The case 
in which several gravitational degrees of freedom are treated exactly deserves 
future study. 

Finally, the interpretation of  the wave function based on the analogy 
with the Kle in-Gordon equation has been analyzed by Vilenkin (1988). It 
can be shown that, in the semielassical limit, both approaches give equivalent 
results (Castagnino, 1989). The main point is that, in order to obtain a 
probability density with conserved normalization [see equations (7)], the 
wave function q, must be multiplied by a factor. In our case, this factor is 
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supplied by the definition of the probabilistic time, while in Vilenkin (1988) 
the same factor appears  due to the definition of the Kle in-Gordon-conserved 
probabili ty current. 

3. THE PROBABILISTIC TIME A N D  THE BACKREACTION 
E Q U A T I O N S  

It is well known that  (Hartle, 1986), in the semiclassical limit, the 
WDWE yields both the classical Einstein equations for the metric of  space- 
time and the SchrSdinger equation for the fluctuations. The latter is nothing 
but the SchrSdinger representation of the quantum field theory in curved 
space. To next order, the Einstein equations are modified and become the 
so-called "backreact ion equations" (BE), in which the mean value of  the 
energy-momentum tensor of  the fluctuation enters as a source. The first 
derivation of  the BE has been given in Hartle (1986), where it is shown 
that the BE follow after postulating a correlation between coordinates and 
momenta.  A more rigorous derivation based on the use of  the Wigner 
function to compute the correlation was presented in Halliwell (1987). An 
alternative derivation should be possible in terms of the probabilistic time 
because, as we defined a time parameter  to all orders in tr, the relation 
between the coordinate a and its " temporal  derivative" da/dO is fixed from 
the beginning. We now discuss this point. 

Let us solve the WDWE in powers of  r considering a wave function 
of  the form 

t~(a, (o.) = e~:(")J(a, r (9) 

where K = o--2Ko + K1 + �9 �9 �9 and J = Jo"t- cr2J1 + �9 �9 �9 (note that K~ and K 2 

are arbitrary since they can be included int'o Jo and J1) .  Setting equation 
(9) into equation (1), we get, to lowest order, 

l [ \ / d K ~  U(a)  =0 (lOa) 
2a \ da ] 

i.e., Ko satisfies the classical Hamil ton-Jacobi  equation. The next two orders 
give the following equations: 

2JodKo dK1 2i dKo OJo .Jod2Ko 
l 

a da da a da Oa a da 2 

i . d K o _ 2 h J o = O  
2 a ----i "l ~ d---a- 

(10b) 
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dKo dKl [dKl\  2 dKo dK2 
la 2J, da da +J~ +2J~ ~aa da 

dKo oJ~ 2idK~ OJo d2K1 iJ~ d2K~ ~Jo'~ 
2i d~ Oa da Oa iJo da----T-- da 2 Oa2 I 

+2a--- 5 iJo +iJ1 da Oa] -2hJl=O (10c) 

On the other hand, from the definition of probabilistic time we have 

dO 
= al/2 e-2 ,m K,{(jo, Jo) + 2o'2[Re(Jo, J~) - (Jo, Jo) Im K2] + �9 ' �9 } (11) 

da 

We will use the freedom in K1 and K2 in order to make J coincide with 
the function X introduced in the previous section. From equations (7) and 
(11) we see that ]J] =IX[ if (Jo, J o) = 1 and Re(Jo, 3"1)=0. Imposing these 
conditions (which fix Im K~ and Im K2) we find, after standard manipula- 
tions (Hartle, 1986; Castagnino, 1989; Halliwell, 1987) 

e 2 l m  K 1 .~, a-1/21dKo/dal (12a) 

i dKo OJo 
hJo (12b) 

a da aa 

where we also set Re K1 = 0 in order to get (12b). Other choices give rise 
to an additional term in this equation (Hartle, 1986; Castagnino, in press). 

From equations (11) and (12a) we find, to lowest order, 

da 1 dKo [ 
d-'O = a - ~ a  , (13) 

Replacing this result into equations (10a) and (12b), we find 

a(da~2-U(a)=O (14a) 
2 \do~ 

�9 OJo 
= h J0 (14b) 

00 

this is the result of Castagnino (1989): to order or ~ 0 becomes the classical 
time and one obtains the 0-0 component of the classical Einstein equations 
(14a) and the usual Schr6dinger equation for the fluctuations (14b). 

To compute 0 in the next order, it is necessary to evaluate Im K2. 
Multiplying equation (10c) by Jo*, integrating the variables aS,, taking the 
imaginary part, and using that 

i dKo [OJo \ 
(hJ~176 da ~-~a 'Jl) (15a) 
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(jo, OJ~ ia(Jo, hJo) (15b) 
~a / dKo/ da 

(2~aO2) 0 (a(Jo, hJo)~ 
Im Jo, = 0---a \ ~ - o / - ~ a  ] (15c) 

one gets, after some calculations, 

d l m K 2  1 d F a(Jo, hJo) ] 
da -2  da [(dKo/da)2J (16) 

From equations (16) and (12) we find 

da 1 I dK~ l [ +0.2a(J~176 ] 
dO- a ~ 1 (dKo/da) 2 + .. .  (17) 

so, using equation (lOa), 

\dO/ U = ~r2(Jo, hJo) (18) 

This equation is the 0-0 component of the BE, since the left-hand side is 
the classical one [see equation (141)], while the correction in the right-hand 
side is the mean value of the energy of the fluctuations. This is a nontrivial 
property of the probabilistic time: while in the classical limit (order 0.o) 
a(0) satisfies the classical Einstein equation, including the first correction 
in 0 -2, we proved that a (0) is the solution of the 0-0 backreaction equation. 
We see then that the variable 0 has a meaning beyond the classical limit, in 
which it becomes the classical time. 

We think that this is a very interesting result, so we plan to continue 
the investigation using this approach by analyzing the probabilistic time in 
more realistic models, including, for instance, more gravitational degrees 
of freedom, and also by compt~ting it up to higher orders in the Planck 
length. This should be useful in understanding the cosmological models 
near the initial singularity. 
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